Washtenaw Community College Comprehensive Report

ELE 211 Basic Electronics Effective Term: Fall 2024

Course Cover

College: Advanced Technologies and Public Service Careers **Division:** Advanced Technologies and Public Service Careers

Department: Advanced Manufacturing **Discipline:** Electricity/Electronics

Course Number: 211 Org Number: 14400

Full Course Title: Basic Electronics
Transcript Title: Basic Electronics

Is Consultation with other department(s) required: No

Publish in the Following: College Catalog, Time Schedule, Web Page **Reason for Submission:** Three Year Review / Assessment Report

Change Information:
Course description
Objectives/Evaluation
Rationale: Course updates

Proposed Start Semester: Winter 2024

Course Description: In this course, students will be introduced to basic electronics concepts and solid state devices. Topics will include the theory and application of light and temperature sensors, diodes, bipolar transistors, field effect transistors, thyristors and operational amplifiers. Using common laboratory equipment, students will build and test circuits.

Course Credit Hours

Variable hours: No

Credits: 4

Lecture Hours: Instructor: 60 Student: 60

Lab: Instructor: 30 Student: 30 Clinical: Instructor: 0 Student: 0

Total Contact Hours: Instructor: 90 Student: 90

Repeatable for Credit: NO Grading Methods: Letter Grades

Audit

Are lectures, labs, or clinicals offered as separate sections?: NO (same sections)

College-Level Reading and Writing

College-level Reading & Writing

College-Level Math

Level 3

Requisites

Prerequisite

ELE 111 minimum grade "C-"

General Education

Request Course Transfer

Proposed For:

Eastern Michigan University Ferris State University Wayne State University

Student Learning Outcomes

1. Experiment with diodes to observe response to changes in temperature and current flow conditions and analyze the diode voltage drops change for semiconductors placed in circuits.

Assessment 1

Assessment Tool: Outcome-related lab project

Assessment Date: Winter 2026 Assessment Cycle: Every Three Years

Course section(s)/other population: All sections Number students to be assessed: All students How the assessment will be scored: Rubric

Standard of success to be used for this assessment: 70% of students will score 70% or better on

the outcome-related lab project

Who will score and analyze the data: Departmental faculty

2. Identify the properties of transistors and analyze their behavior in circuits.

Assessment 1

Assessment Tool: Outcome-related final exam questions

Assessment Date: Winter 2026

Assessment Cycle: Every Three Years

Course section(s)/other population: All sections Number students to be assessed: All students How the assessment will be scored: Answer key

Standard of success to be used for this assessment: 70% of students will score 70% or better on

the outcome-related final exam questions

Who will score and analyze the data: Departmental faculty

3. Identify the properties of operational amplifiers and analyze their behavior in circuits.

Assessment 1

Assessment Tool: Outcome-related final exam questions

Assessment Date: Winter 2026

Assessment Cycle: Every Three Years Course section(s)/other population: All sections

Number students to be assessed: All students How the assessment will be scored: Answer key

Standard of success to be used for this assessment: 70% of students will score 70% or better on

the outcome-related final exam questions

Who will score and analyze the data: Departmental faculty

Course Objectives

- 1. Construct and test the following circuits:
 - a. half-wave rectifier
 - b. conventional full-wave rectifier
 - c. bridge full-wave rectifier
 - d. Zener regulator
- 2. Construct and test the following circuits:
 - a. small signal amplifier

- b. transistor switch
- c. multistage amplifiers with negative feedback
- d. bipolar junction transistor (BJT) power amplifiers
- e. field-effect transistor (FET) amplifiers
- f. operational amplifiers
- 3. Construct and test the following circuits:
 - a. silicon-controlled rectifier (SCR) static switch
 - b. SCR phase control
 - c. a photoresistor switch circuit
 - d. sensor circuits

New Resources for Course

Course Textbooks/Resources

Textbooks

Stephen Herman. Electronics for Electricians, ed. Cengage, 2016, ISBN: 978-130550599.

Manuals

Periodicals

Software

Equipment/Facilities

Level III classroom

Other: ELE department laboratory (TI 145) with ELE department electronic test equipment. Dual DC power supply, function generator, oscilloscope, electronic parts kit.

Reviewer	Action	Date
Faculty Preparer:		
Jim Popovich	Faculty Preparer	Aug 14, 2023
Department Chair/Area Director:		
Allan Coleman	Recommend Approval	Aug 16, 2023
Dean:		
Jimmie Baber	Recommend Approval	Aug 17, 2023
Curriculum Committee Chair:		
Randy Van Wagnen	Recommend Approval	Apr 23, 2024
Assessment Committee Chair:		
Jessica Hale	Recommend Approval	May 01, 2024
Vice President for Instruction:		
Brandon Tucker	Approve	May 01, 2024

Washtenaw Community College Comprehensive Report

ELE 211 Basic Electronics Effective Term: Winter 2020

Course Cover

Division: Advanced Technologies and Public Service Careers

Department: Advanced Manufacturing **Discipline:** Electricity/Electronics

Course Number: 211 Org Number: 14400

Full Course Title: Basic Electronics Transcript Title: Basic Electronics

Is Consultation with other department(s) required: No

Publish in the Following: College Catalog, Time Schedule, Web Page **Reason for Submission:** Three Year Review / Assessment Report

Change Information:

Consultation with all departments affected by this course is required.

Course description

Distribution of contact hours

Pre-requisite, co-requisite, or enrollment restrictions

Outcomes/Assessment Objectives/Evaluation

Other:

Rationale: 3 year review including addition of student learning outcomes which had not been brought forward from the older syllabus into CurricUnet.

Proposed Start Semester: Winter 2020

Course Description: In this basic electronics course, students are introduced to solid state devices. Topics will include the theory and application of diodes, bipolar transistors, field effect transistors, thyristors and operational amplifiers. Using common laboratory equipment, students will build and test circuits.

Course Credit Hours

Variable hours: No

Credits: 4

Lecture Hours: Instructor: 60 Student: 60

Lab: Instructor: 30 Student: 30 Clinical: Instructor: 0 Student: 0

Total Contact Hours: Instructor: 90 Student: 90

Repeatable for Credit: NO Grading Methods: Letter Grades

Audit

Are lectures, labs, or clinicals offered as separate sections?: NO (same sections)

College-Level Reading and Writing

College-level Reading & Writing

College-Level Math

Level 3

Requisites

Prerequisite

ELE 111 minimum grade "C-"

General Education

Request Course Transfer

Proposed For:

Student Learning Outcomes

1. Identify the properties of diodes and analyze their behavior in circuits.

Assessment 1

Assessment Tool: Standardized Final Exam

Assessment Date: Winter 2022

Assessment Cycle: Every Three Years

Course section(s)/other population: All sections Number students to be assessed: All students

How the assessment will be scored: Departmentally-developed answer key

Standard of success to be used for this assessment: 70% of students will score 70% or better on the final exam questions relevant to this outcome. (Each student's score for this outcome will be computed by averaging their scores on the final exam questions relevant to this outcome.)

Who will score and analyze the data: Faculty who teach this course

2. Identify the properties of transistors and analyze their behavior in circuits.

Assessment 1

Assessment Tool: Standardized Final Exam

Assessment Date: Winter 2022

Assessment Cycle: Every Three Years

Course section(s)/other population: All sections Number students to be assessed: All students

How the assessment will be scored: Departmentally-developed answer key

Standard of success to be used for this assessment: 70% of students will score 70% or better on the final exam questions relevant to this outcome. (Each student's score for this outcome will be computed by averaging their scores on the final exam questions relevant to this outcome.)

Who will score and analyze the data: Faculty who teach this course

3. Identify the properties of operational amplifiers and analyze their behavior in circuits.

Assessment 1

Assessment Tool: Standardized Final Exam

Assessment Date: Winter 2022

Assessment Cycle: Every Three Years

Course section(s)/other population: All sections Number students to be assessed: All students

How the assessment will be scored: Departmentally-developed answer key

Standard of success to be used for this assessment: 70% of students will score 70% or better on the final exam questions relevant to this outcome. (Each student's score for this outcome will be computed by averaging their scores on the final exam questions relevant to this outcome.)

Who will score and analyze the data: Faculty who teach this course

Course Objectives

- 1. Construct and test the following circuits:
 - a. half-wave rectifier

- b. conventional full-wave rectifier
- c. bridge full-wave rectifier
- d. zener regulator
- 2. Troubleshoot and repair the circuits listed in item 1 after the instructor has injected a fault. The repaired circuits must function in accordance with the parameters specified by the instructor.
- 3. Construct and test the following circuits:
 - a. small signal amplifier
 - b. transistor switch
 - c. multistage amplifiers with negative feedback
 - d. BJT power amplifiers
 - e. FET amplifiers
 - f. operational amplifiers
- 4. Troubleshoot and repair the circuits listed in item 3 after the instructor has injected a fault. The repaired circuits must function in accordance with the parameters specified by the instructor.
- 5. Construct and test the following circuits:
 - a. SCR static switch
 - b. SCR phase control
 - c. a photoresistor switch circuit
 - d. sensor circuits
- 6. Troubleshoot and repair the circuits listed in item 5 after the instructor has injected a fault. The repaired circuits must function in accordance with the parameters specified by the instructor.

New Resources for Course

Course Textbooks/Resources

Textbooks

Stephen Herman. *Electronics for Electricians*, ed. Cengage, 2016, ISBN: 978-130550599.

Manuals

Periodicals

Software

Equipment/Facilities

Level III classroom

Other: ELE department laboratory (TI 145) with ELE department electronic test equipment.

Reviewer	Action	<u>Date</u>
Faculty Preparer:		
Dale Petty	Faculty Preparer	Jun 26, 2019
Department Chair/Area Director:		
Thomas Penird	Recommend Approval	Jul 02, 2019
Dean:		
Brandon Tucker	Recommend Approval	Jul 08, 2019
Curriculum Committee Chair:		
Lisa Veasey	Recommend Approval	Aug 23, 2019
Assessment Committee Chair:		
Shawn Deron	Recommend Approval	Sep 10, 2019
Vice President for Instruction:		
Kimberly Hurns	Approve	Sep 11, 2019