MTH 293 Calculus III Effective Term: Winter 2025

Course Cover

College: Math, Science and Engineering Tech Division: Math, Science and Engineering Tech Department: Math & Engineering Studies

Discipline: Mathematics **Course Number:** 293 **Org Number:** 12200

Full Course Title: Calculus III Transcript Title: Calculus III

Is Consultation with other department(s) required: No

Publish in the Following: College Catalog, Time Schedule, Web Page

Reason for Submission: Change Information:

Consultation with all departments affected by this course is required.

Rationale: New materials for the course. **Proposed Start Semester:** Winter 2024

Course Description: In this course, students apply knowledge learned in the first two Calculus courses to functions of two or three variables, including parametric equations and polar coordinates vectors in the plane and space, partial differentiation, double and triple integrals, surface integrals, line integrals, Green's Theorem, Stokes' Theorem, Divergence, Curl and applications. This is the third course in the standard Calculus sequence.

Course Credit Hours

Variable hours: No

Credits: 4

Lecture Hours: Instructor: 60 Student: 60

Lab: Instructor: 0 Student: 0 Clinical: Instructor: 0 Student: 0

Total Contact Hours: Instructor: 60 **Student:** 60

Repeatable for Credit: NO Grading Methods: Letter Grades

Audit

Are lectures, labs, or clinicals offered as separate sections?: NO (same sections)

College-Level Reading and Writing

College-level Reading & Writing

College-Level Math

No Level Required

Requisites

Prerequisite

MTH 192 minimum grade "C"

General Education

Degree Attributes

Assoc in Applied Sci - Area 3

Assoc in Science - Area 3

Assoc in Arts - Area 3

MACRAO Science & Math

Michigan Transfer Agreement - MTA

MTA Mathematics

Request Course Transfer

Proposed For:

Eastern Michigan University Michigan State University University of Michigan Wayne State University

Student Learning Outcomes

1. Perform basic operations of Vector Algebra.

Assessment 1

Assessment Tool: Outcome-related questions on the end-of-semester exam

Assessment Date: Fall 2025

Assessment Cycle: Every Two Years

Course section(s)/other population: All course sections

Number students to be assessed: 60 samples from Final Exams collected from all sections

offered during the 2-year period.

How the assessment will be scored: Departmentally-developed rubric

Standard of success to be used for this assessment: 70% of students sampled will score an

average of 70% or higher on each exam question that addresses Outcome 1.

Who will score and analyze the data: Course lead instructor

2. Differentiate functions of two or three variables, including partial derivatives, chain rules and implicit differentiation.

Assessment 1

Assessment Tool: Outcome-related questions on the end-of-semester exam

Assessment Date: Fall 2025

Assessment Cycle: Every Two Years

Course section(s)/other population: All course sections

Number students to be assessed: 60 samples from Final Exams collected from all sections

offered during the 2-year period.

How the assessment will be scored: Departmentally-developed rubric

Standard of success to be used for this assessment: 70% of students sampled will score an

average of 70% or higher on each exam question that addresses Outcome 2.

Who will score and analyze the data: Course lead instructor

3. Integrate and find limits of functions of two or three variables, using rectangular, cylindrical or spherical coordinates.

Assessment 1

Assessment Tool: Outcome-related questions on the end-of-semester exam

Assessment Date: Fall 2025

Assessment Cycle: Every Two Years

Course section(s)/other population: All course sections

Number students to be assessed: 60 samples from Final Exams collected from all sections

offered during the 2-year period.

How the assessment will be scored: Departmentally-developed rubric

Standard of success to be used for this assessment: 70% of students sampled will score an

average of 70% or higher on each exam question that addresses Outcome 3. Who will score and analyze the data: Course lead instructor

4. Perform calculations in Vector Calculus using Green's Theorem, the divergence theorem and Stokes' Theorem.

Assessment 1

Assessment Tool: Outcome-related questions on the end-of-semester exam

Assessment Date: Fall 2025

Assessment Cycle: Every Two Years

Course section(s)/other population: All course sections

Number students to be assessed: 60 samples from Final Exams collected from all sections

offered during the 2-year period.

How the assessment will be scored: Departmentally-developed rubric

Standard of success to be used for this assessment: 70% of students sampled will score an

average of 70% or higher on each exam question that addresses Outcome 4.

Who will score and analyze the data: Course lead instructor

5. Find relative and absolute extrema of functions of several variables using the second partial derivative test and Lagrange multipliers.

Assessment 1

Assessment Tool: Outcome-related questions on the end-of-semester exam

Assessment Date: Fall 2025

Assessment Cycle: Every Two Years

Course section(s)/other population: All course sections

Number students to be assessed: 60 samples from Final Exams collected from all sections

offered during the 2-year period.

How the assessment will be scored: Departmentally-developed rubric

Standard of success to be used for this assessment: 70% of students sampled will score an average of 70% or higher on each exam question that addresses Outcome 5.

Who will score and analyze the data: Course lead instructor

Course Objectives

- 1. Add and subtract vectors in plane and space.
- 2. Evaluate dot/cross products of vectors.
- 3. Solve application problems related to dot/cross products of vectors
- 4. Write equations of lines and planes.
- 5. Find limits and derivatives of functions of more than one independent variable.
- 6. Find limits and derivatives of vector-valued functions.
- 7. Use second order partial derivatives to determine if a critical point is a relative extrema.
- 8. Set up and solve optimization problems with constraints using method of Lagrange multipliers.
- 9. Write and solve multiple integrals using an appropriate coordinate system.
- 10. Find length, area and volume using an appropriate integral.
- 11. Apply length, area and volume, and find work and flux using an appropriate integral.
- 12. Solve multiple integrals by substitution method or changing coordinate system.
- 13. Demonstrate an understanding of the Fundamental Theorem for Line Integrals and the relationship between line integrals of conservative vector fields.
- 14. Demonstrate an understanding of the Fundamental Theorem for Line Integrals and Green's Theorem in Vector Calculus.
- 15. Demonstrate an understanding of the divergence theorem and Stokes' Theorem in Vector Calculus.

New Resources for Course

Course Textbooks/Resources

Textbooks

Strang, Herman. Calculus Volume 3, ed. Texas: Montezuma Publishing, 2023, ISBN: 13: 978-.

Manuals

Periodicals

Software

MY OPEN MATH. OMy Open Math, ? ed.

MyOpenMath is an online course management and assessment system for mathematics and other quantitative fields. MyOpenMath's focus is providing rich algorithmically generated assessment to support the use of free, open textbooks

Equipment/Facilities

Level III classroom Testing Center Data projector/computer

Reviewer	Action	<u>Date</u>
Faculty Preparer:		
Michael Quail	Faculty Preparer	Oct 20, 2023
Department Chair/Area Director:		
Nichole Klemmer	Recommend Approval	Nov 09, 2023
Dean:		
Tracy Schwab	Recommend Approval	Nov 09, 2023
Curriculum Committee Chair:		
Randy Van Wagnen	Recommend Approval	Jun 27, 2024
Assessment Committee Chair:		
Jessica Hale	Recommend Approval	Jul 05, 2024
Vice President for Instruction:		
Brandon Tucker	Approve	Jul 05, 2024

MTH 293 Calculus III Effective Term: Fall 2022

Course Cover

College: Math, Science and Engineering Tech Division: Math, Science and Engineering Tech Department: Math & Engineering Studies

Discipline: Mathematics Course Number: 293 Org Number: 12200

Full Course Title: Calculus III Transcript Title: Calculus III

Is Consultation with other department(s) required: No

Publish in the Following: College Catalog, Time Schedule, Web Page **Reason for Submission:** Three Year Review / Assessment Report

Change Information:

Consultation with all departments affected by this course is required.

Course description Outcomes/Assessment Objectives/Evaluation

Rationale: Update course topics required in course credit transfer to other 4-year institutions.

Proposed Start Semester: Fall 2021

Course Description: In this course, students apply knowledge learned in the first two Calculus courses to functions of two or three variables, including parametric equations and polar coordinates vectors in the plane and space, partial differentiation, double and triple integrals, surface integrals, line integrals, Green's Theorem, Stokes' Theorem, Divergence, Curl and applications. This is the third course in the standard Calculus sequence.

Course Credit Hours

Variable hours: No

Credits: 4

Lecture Hours: Instructor: 60 Student: 60

Lab: Instructor: 0 **Student:** 0 **Clinical: Instructor:** 0 **Student:** 0

Total Contact Hours: Instructor: 60 Student: 60

Repeatable for Credit: NO Grading Methods: Letter Grades

Audit

Are lectures, labs, or clinicals offered as separate sections?: NO (same sections)

College-Level Reading and Writing

College-level Reading & Writing

College-Level Math

No Level Required

Requisites

Prerequisite

MTH 192 minimum grade "C"

General Education

Degree Attributes

Assoc in Applied Sci - Area 3

Assoc in Science - Area 3

Assoc in Arts - Area 3

MACRAO Science & Math

Michigan Transfer Agreement - MTA

MTA Mathematics

Request Course Transfer

Proposed For:

Eastern Michigan University University of Michigan

Student Learning Outcomes

1. Perform basic operations of Vector Algebra.

Assessment 1

Assessment Tool: Outcome-related questions on the end-of-semester exam

Assessment Date: Fall 2022

Assessment Cycle: Every Two Years

Course section(s)/other population: All course sections

Number students to be assessed: 60 samples from Final Exams collected from all sections

offered during the 2-year period.

How the assessment will be scored: Departmentally-developed rubric

Standard of success to be used for this assessment: 70% of students sampled will score an

average of 70% or higher on each exam question that addresses Outcome 1.

Who will score and analyze the data: Course lead instructor

2. Differentiate functions of two or three variables, including partial derivatives, chain rules and implicit differentiation.

Assessment 1

Assessment Tool: Outcome-related questions on the end-of-semester exam

Assessment Date: Fall 2022

Assessment Cycle: Every Two Years

Course section(s)/other population: All course sections

Number students to be assessed: 60 samples from Final Exams collected from all sections

offered during the 2-year period.

How the assessment will be scored: Departmentally-developed rubric

Standard of success to be used for this assessment: 70% of students sampled will score an

average of 70% or higher on each exam question that addresses Outcome 2.

Who will score and analyze the data: Course lead instructor

3. Integrate and find limits of functions of two or three variables, using rectangular, cylindrical or spherical coordinates.

Assessment 1

Assessment Tool: Outcome-related questions on the end-of-semester exam

Assessment Date: Fall 2022

Assessment Cycle: Every Two Years

Course section(s)/other population: All course sections

Number students to be assessed: 60 samples from Final Exams collected from all sections offered during the 2-year period.

How the assessment will be scored: Departmentally-developed rubric

Standard of success to be used for this assessment: 70% of students sampled will score an average of 70% or higher on each exam question that addresses Outcome 3.

Who will score and analyze the data: Course lead instructor

4. Perform calculations in Vector Calculus using Green's Theorem, the divergence theorem and Stokes' Theorem.

Assessment 1

Assessment Tool: Outcome-related questions on the end-of-semester exam

Assessment Date: Fall 2022

Assessment Cycle: Every Two Years

Course section(s)/other population: All course sections

Number students to be assessed: 60 samples from Final Exams collected from all sections

offered during the 2-year period.

How the assessment will be scored: Departmentally-developed rubric

Standard of success to be used for this assessment: 70% of students sampled will score an

average of 70% or higher on each exam question that addresses Outcome 4.

Who will score and analyze the data: Course lead instructor

5. Find relative and absolute extrema of functions of several variables using the second partial derivative test and Lagrange multipliers.

Assessment 1

Assessment Tool: Outcome-related questions on the end-of-semester exam

Assessment Date: Fall 2022

Assessment Cycle: Every Two Years

Course section(s)/other population: All course sections

Number students to be assessed: 60 samples from Final Exams collected from all sections

offered during the 2-year period.

How the assessment will be scored: Departmentally-developed rubric

Standard of success to be used for this assessment: 70% of students sampled will score an average of 70% or higher on each exam question that addresses Outcome 5.

Who will score and analyze the data: Course lead instructor

Course Objectives

- 1. Add and subtract vectors in plane and space.
- 2. Evaluate dot/cross products of vectors.
- 3. Solve application problems related to dot/cross products of vectors
- 4. Write equations of lines and planes.
- 5. Find limits and derivatives of functions of more than one independent variable.
- 6. Find limits and derivatives of vector-valued functions.
- 7. Use second order partial derivatives to determine if a critical point is a relative extrema.
- 8. Set up and solve optimization problems with constraints using method of Lagrange multipliers.
- 9. Write and solve multiple integrals using an appropriate coordinate system.
- 10. Find length, area and volume using an appropriate integral.
- 11. Apply length, area and volume, and find work and flux using an appropriate integral.
- 12. Solve multiple integrals by substitution method or changing coordinate system.
- 13. Demonstrate an understanding of the Fundamental Theorem for Line Integrals and the relationship between line integrals of conservative vector fields.
- 14. Demonstrate an understanding of the Fundamental Theorem for Line Integrals and Green's Theorem in Vector Calculus.
- 15. Demonstrate an understanding of the divergence theorem and Stokes' Theorem in Vector Calculus.

New Resources for Course

Course Textbooks/Resources

Textbooks

Larson, R., B. Edwards. *Calculus: Early Transcendental Functions*, 7th ed. Boston: Brooks Cole, 2015, ISBN: 9781285774770.

Manuals Periodicals Software

Equipment/Facilities

Level III classroom
Testing Center
Data projector/computer

Reviewer	<u>Action</u>	<u>Date</u>
Faculty Preparer:		
Yin Lu	Faculty Preparer	Jul 12, 2021
Department Chair/Area Director:		
Lawrence David	Recommend Approval	Aug 09, 2021
Dean:		
Victor Vega	Recommend Approval	Aug 10, 2021
Curriculum Committee Chair:		
Randy Van Wagnen	Recommend Approval	Jun 16, 2022
Assessment Committee Chair:		
Shawn Deron	Recommend Approval	Jun 21, 2022
Vice President for Instruction:		
Victor Vega	Approve	Jul 08, 2022

MTH 293 Calculus III Effective Term: Spring/Summer 2020

Course Cover

Division: Math, Science and Engineering Tech **Department:** Math & Engineering Studies

Discipline: Mathematics **Course Number:** 293 **Org Number:** 12200

Full Course Title: Calculus III Transcript Title: Calculus III

Is Consultation with other department(s) required: No

Publish in the Following: College Catalog, Time Schedule, Web Page **Reason for Submission:** Three Year Review / Assessment Report

Change Information:

Consultation with all departments affected by this course is required.

Outcomes/Assessment

Other:

Rationale: Three-year syllabus review. **Proposed Start Semester:** Fall 2019

Course Description: This is the third course in the standard Calculus sequence. This course covers differential, integral and vector calculus for functions of more than one variable. To confirm transfer equivalency, consult a counselor or check the Web page of the college to which you are transferring. A graphing calculator is required for this course. See the time schedule for current brand and model.

Course Credit Hours

Variable hours: No

Credits: 4

Lecture Hours: Instructor: 60 Student: 60

Lab: Instructor: 0 **Student:** 0 **Clinical: Instructor:** 0 **Student:** 0

Total Contact Hours: Instructor: 60 Student: 60

Repeatable for Credit: NO Grading Methods: Letter Grades

Audit

Are lectures, labs, or clinicals offered as separate sections?: NO (same sections)

College-Level Reading and Writing

College-level Reading & Writing

College-Level Math

No Level Required

Requisites

Prerequisite

MTH 192 minimum grade "C"

General Education

Degree Attributes

Assoc in Applied Sci - Area 3 Assoc in Science - Area 3

Assoc in Arts - Area 3

MACRAO Science & Math

Michigan Transfer Agreement - MTA

MTA Mathematics

Request Course Transfer

Proposed For:

Eastern Michigan University University of Michigan

Student Learning Outcomes

1. Perform basic operations of Vector Algebra.

Assessment 1

Assessment Tool: End of semester exam

Assessment Date: Winter 2020

Assessment Cycle: Every Three Years

Course section(s)/other population: All course sections

Number students to be assessed: A random sample of 20% of students enrolled or a minimum

of 30 students

How the assessment will be scored: Departmentally-developed rubric

Standard of success to be used for this assessment: 70% of students sampled will score an

average of 70% or higher on each exam question that addresses Outcome 1

Who will score and analyze the data: Department

2. Differentiate functions of several variables.

Assessment 1

Assessment Tool: End of semester exam

Assessment Date: Winter 2020

Assessment Cycle: Every Three Years

Course section(s)/other population: All course sections

Number students to be assessed: A random sample of 20% of students enrolled or a minimum

of 30 students

How the assessment will be scored: Departmentally-developed rubric

Standard of success to be used for this assessment: 70% of students sampled will score an

average of 70% or higher on each exam question that addresses Outcome 2

Who will score and analyze the data: Department

3. Integrate and find limits of functions of several variables.

Assessment 1

Assessment Tool: End of semester exam

Assessment Date: Winter 2020

Assessment Cycle: Every Three Years

Course section(s)/other population: All course sections

Number students to be assessed: A random sample of 20% of students enrolled or a minimum

of 30 students

How the assessment will be scored: Departmentally-developed rubric

Standard of success to be used for this assessment: 70% of students sampled will score an

average of 70% or higher on each exam question that addresses Outcome 3

Who will score and analyze the data: Department

4. Perform calculations in Vector Calculus.

Assessment 1

Assessment Tool: End of semester exams

Assessment Date: Winter 2020

Assessment Cycle: Every Three Years

Course section(s)/other population: All course sections

Number students to be assessed: A random sample of 20% of students enrolled or a minimum

of 30 students

How the assessment will be scored: Departmentally-developed rubric

Standard of success to be used for this assessment: 70% of students sampled will score an

average of 70% or higher on each exam question that addresses Outcome 4

Who will score and analyze the data: Department

5. Find relative and absolute extrema of functions of several variables.

Assessment 1

Assessment Tool: End of semester exam

Assessment Date: Winter 2020

Assessment Cycle: Every Three Years

Course section(s)/other population: All course sections

Number students to be assessed: A random sample of 20% of students enrolled or a minimum

of 30 students

How the assessment will be scored: Departmentally-developed rubric

Standard of success to be used for this assessment: 70% of students sampled will score an

average of 70% or higher on each exam question that addresses Outcome 5

Who will score and analyze the data: Department

Course Objectives

- 1. Add and subtract vectors in plane and space.
- 2. Evaluate dot/cross products of vectors and solve related application problems.
- 3. Write equations of lines and planes in space.
- 4. Find limits and derivatives of functions of more than one independent variable.
- 5. Find limits and derivatives of vector-valued functions.
- 6. Use second order partial derivatives to determine if a critical point is a relative extrema.
- 7. Set up and solve optimization problems involving several variables, with or without constraints.
- 8. Set up and solve optimization problems using method of Lagrange Multipliers.
- 9. Write and solve multiple integrals using an appropriate coordinate system.
- 10. Find length, area, volume, work and flux using an appropriate integral.
- 11. Solve multiple integrals by changing variables.
- 12. Demonstrate an understanding of the major theorems (Green's, Gauss' and Stokes').
- 13. Perform basic operations and selected applications of vector calculus, including divergence and curl.
- 14. Demonstrate an understanding of the Fundamental Theorem of Line integrals and the relationship between line integrals of conservative vector fields and the values of the potential function at the endpoints of the curve.
- 15. Perform calculations using the tangential form and normal form of Greens theorem.

New Resources for Course

Course Textbooks/Resources

Textbooks

Larson, R., B. Edwards. *Calculus: Early Transcendental Functions*, 7th ed. Boston: Brooks Cole, 2015, ISBN: 9781285774770.

Manuals

Periodicals

Software

Equipment/Facilities

Level III classroom
Testing Center

<u>Reviewer</u>	<u>Action</u>	<u>Date</u>
Faculty Preparer:		
Yin Lu	Faculty Preparer	Jun 04, 2019
Department Chair/Area Director:		
Lisa Manoukian	Recommend Approval	Jun 09, 2019
Dean:		
Kimberly Jones	Recommend Approval	Jul 02, 2019
Curriculum Committee Chair:		
Lisa Veasey	Recommend Approval	Nov 12, 2019
Assessment Committee Chair:		
Shawn Deron	Recommend Approval	Nov 15, 2019
Vice President for Instruction:		
Kimberly Hurns	Approve	Nov 19, 2019

MTH 293 Calculus III Effective Term: Fall 2017

Course Cover

Division: Math, Science and Engineering Tech

Department: Mathematics **Discipline:** Mathematics **Course Number:** 293 **Org Number:** 12200

Full Course Title: Calculus III Transcript Title: Calculus III

Is Consultation with other department(s) required: No

Publish in the Following: College Catalog, Time Schedule, Web Page **Reason for Submission:** Three Year Review / Assessment Report

Change Information:
 Course description
 Outcomes/Assessment
 Objectives/Evaluation
Rationale: three year review

Proposed Start Semester: Fall 2017

Course Description: Math 293 is the third course in the standard Calculus sequence. This course covers differential, integral and vector calculus for functions of more than one variable. To confirm transfer equivalency, consult a counselor or check the Web page of the college to which you are transferring. A graphing calculator is required for this course. See the time schedule for current brand and model.

Course Credit Hours

Variable hours: No

Credits: 4

Lecture Hours: Instructor: 60 Student: 60

Lab: Instructor: 0 **Student:** 0 **Clinical: Instructor:** 0 **Student:** 0

Total Contact Hours: Instructor: 60 Student: 60

Repeatable for Credit: NO Grading Methods: Letter Grades

Audit

Are lectures, labs, or clinicals offered as separate sections?: NO (same sections)

College-Level Reading and Writing

College-level Reading & Writing

College-Level Math

No Level Required

Requisites

Prerequisite

MTH 192 minimum grade "C"

General Education

Degree Attributes

Assoc in Applied Sci - Area 3 Assoc in Science - Area 3

Assoc in Arts - Area 3 MACRAO Science & Math

Michigan Transfer Agreement - MTA

MTA Mathematics

Request Course Transfer

Proposed For:

Eastern Michigan University University of Michigan

Student Learning Outcomes

1. Perform basic operations of Vector Algebra.

Assessment 1

Assessment Tool: End of semester exam

Assessment Date: Winter 2017

Assessment Cycle: Every Three Years

Course section(s)/other population: All course sections

Number students to be assessed: A random sample of 20% of students enrolled or a minimum

of 30 students

How the assessment will be scored: Departmentally-developed rubric

Standard of success to be used for this assessment: 70% of students sampled will score an

average of 70% or higher on each exam question that addresses Outcome 1.

Who will score and analyze the data: Department

2. Differentiate functions of several variables.

Assessment 1

Assessment Tool: End of semester exam

Assessment Date: Winter 2017

Assessment Cycle: Every Three Years

Course section(s)/other population: All course sections

Number students to be assessed: A random sample of 20% of students enrolled or a minimum

of 30 students

How the assessment will be scored: Departmentally-developed rubric

Standard of success to be used for this assessment: 70% of students sampled will score an

average of 70% or higher on each exam question that addresses Outcome 2.

Who will score and analyze the data: Department

3. Integrate functions of several variables.

Assessment 1

Assessment Tool: End of semester exam

Assessment Date: Winter 2017

Assessment Cycle: Every Three Years

Course section(s)/other population: All course sections

Number students to be assessed: A random sample of 20% of students enrolled or a minimum

of 30 students

How the assessment will be scored: Departmentally-developed rubric

Standard of success to be used for this assessment: 70% of students sampled will score an average of 70% or higher on each exam question that addresses Outcome 3.

average of 7070 of higher on each exam question that addresses outcome

Who will score and analyze the data: Department

4. Perform calculations in Vector Calculus.

Assessment 1

Assessment Tool: End of semester exams

Assessment Date: Winter 2017 Assessment Cycle: Every Three Years

Course section(s)/other population: All course sections

Number students to be assessed: A random sample of 20% of students enrolled or a minimum

of 30 students

How the assessment will be scored: Departmentally-developed rubric

Standard of success to be used for this assessment: 70% of students sampled will score an

average of 70% or higher on each exam question that addresses Outcome 4

Who will score and analyze the data: Department

Course Objectives

- 1. Add and subtract vectors in plane and space.
- 2. Evaluate dot/cross products of vectors and solve related application problems.
- 3. Write equations of lines and planes in space.
- 4. Find limits and derivatives of functions of more than one independent variable.
- 5. Find limits and derivatives of vector-valued functions.
- 6. Use second order partial derivatives to determine if a critical point is a relative extrema.
- 7. Set up and solve optimization problems involving several variables, with or without constraints.
- 8. Set up and solve optimization problems using method of Lagrange Multipliers.
- 9. Write and solve multiple integrals using an appropriate coordinate system.
- 10. Find length, area, volume, work and flux using an appropriate integral.
- 11. Solve multiple integrals by changing variables.
- 12. Demonstrate an understanding of the major theorems (Green's, Gauss' and Stokes') and perform basic operations and selected applications of vector calculus, including divergence and curl.
- 13. Demonstrate an understanding of the Fundamental Theorem of Line integrals and the relationship between line integrals of conservative vector fields and the values of the potential function at the endpoints of the curve.
- 14. Make calculations using the tangential form and normal form of Greens theorem.

New Resources for Course

Course Textbooks/Resources

Textbooks

Larson, R., B. Edwards. *Calculus: Early Transcendental Functions*, 6th ed. Boston: Brooks Cole, 2015, ISBN: 9781285774770.

Manuals

Periodicals

Software

Equipment/Facilities

Level III classroom

<u>Reviewer</u>	Action	<u>Date</u>
Faculty Preparer:		
Frank Gerlitz	Faculty Preparer	Dec 05, 2016
Department Chair/Area Director:		
Lisa Rombes	Recommend Approval	Dec 13, 2016
Dean:		
Kristin Good	Recommend Approval	Dec 14, 2016

Curriculum Committee Chair:

David Wooten Recommend Approval Mar 21, 2017

Assessment Committee Chair:

Ruth Walsh Recommend Approval Mar 22, 2017

Vice President for Instruction:

Kimberly Hurns Approve Mar 23, 2017